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Probability Distribution Functions



Learning Objectives

1. Understand probability density functions for continuous
variables.

2. Understand the uniform distribution and its properties.





The Problem with Continuous Random Variables

▶ For discrete random variables, we had a probability mass
function, which assigned probability to all values.

▶ If we have a continuous distribution, we cannot assign
probability directly to values.

▶ Imagine X takes on an uncountable number of values, and that
P(X = x) > 0 for these.

▶ What will happen to P(S)?

▶ Recall that we also had a cumulative distribution function
for P(X ≤ x).

▶ This is still well-defined for continuous random variables.
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Deriving The Probability Density Function

▶ For discrete variables, the CDF was given by the summation of
the PMF.

▶ In continuous settings, summations become integrals.

▶ We can imagine a function, f (x), such that

FX (x) =
∫ x
−∞ f (t)dt.

▶ By the fundamental theorem of calculus this means that
f (x) = d

dx FX (x) is analogous to the pmf.

▶ We call f (x) the probability density function (PDF).
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The Probability Density Function

▶ The PDF characterizes a continuous distribution, and can be
plotted similar to a PMF.

▶ It represents the relative likelihood of outcomes, but it does not
directly represent probabilities.

▶ Instead, probabilities are given by areas under the curve, which is to say

integrals,

P(a < X ≤ b) =
∫ b
a f (x)dx = FX (b) − Fx(a).

▶ We must have that f (x) ≥ 0 for all x and that ∫ ∞
−∞ f (x)dx = 1.
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The Continuous Uniform Distribution
▶ Suppose that any value on an interval [a, b] is equally likely.

▶ This is a distribution known as the (continuous) uniform
distribution and has PDF of

f (x) =


1
b−a a ≤ x ≤ b
0 otherwise

.

▶ Note that P(X = c) = 0 for any c , even if c ∈ [a, b].
▶ If we have [c , d ] ⊂ [a, b] then the probability that X ∈ [c , d ] is

∫ d
c

1
b − adx = d − c

b − a .
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Summary

▶ Continuous random variables do not have probability mass
functions, they have probability density functions.

▶ A PDF can be integrated to determine the probability of an
event.

▶ Singletons have probability 0.

▶ The uniform distribution is a continuous distribution which
gives equal density to all values on an interval.
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